Contribution from the Department of Inorganic Chemistry Charles University, Prague, Czechoslovakia

Metal Complexes of Thiopolycarboxylic Acids. V. Ethyliednetetrathiotetraacetic Acid

P. Petráš and J. Podlaha

Receveid July 30, 1971

The title compound forms weak 1:1 and 2:1 (metalto-ligand) complexes with bivalent transition metal ions from Mn to Cu. Both types were studied in solution and in solid state, and from the properties of the complexes conclusions were drawn regarding their molecular structure.

Introduction

Ethylidenetetrathiotetraacetic acid,

$$\frac{HOOCCH_{1S}}{HOOCCH_{1S}}CH-CH < \frac{SCH_{2}COOH}{SCH_{2}COOH} = H_{4}E$$

was described first by Ritter and Lower.¹ Its coordination properties towards metals were studied by several authors,^{2,3} and solid complexes, M₂E.nH₂O (M = Co, Ni and Cu), were isolated.^{4,5} As a continuation of the previous papers of this series,6-9 a systematic examination of this potentially octadentate ligand and its transition metal complexes was undertaken in this work.

Experimental Part

Materials

The ligand, H_4E , was synthesized according to Longo *et al.*³ It formed white crystals of m.p. 201-202° (lit.,^{1,2,4} 189-204°). Other materials were prepared as described previously.6.7

Apparatus and Methods

These were described in the previous papers.⁶⁻⁸

Analytical

Since the bromate-bromide method used previously⁷

- Ritter J.J., Lower M.J., J. Am. Chem. Soc., 74, 5576 (1952).
 Saini G., Ostacoli G., Campi E., and Cibrario N., Gazz. Chim. Ital., 91, 904 (1961).
 Longo F.R., Ventresca A., Drach J.E., McBride J., and Sauers R.F., Chem. Analyst, 54, 101 (1965).
 Geary W.J. and Malcolm D.E., J. Chem. Soc., (A), 798 (1970).
 Ouchi A., Ohashi Y., Takeuchi T., and Yoshino Y.: Bull. Chem. Soc. Japan, 43, 1088 (1970).
 Podlaha J. and Podlahová J., Inorg. Chim. Acta, 4, 521 (1970).
 Podlaha J. and Podlahová J., Inorg. Chim. Acta, 5, 413 (1971).
 Podlaha J. and Podlahová J., Inorg. Chim. Acta, 5, 420 (1971).

was found to give unsatisfactory results with H₄E, a method was developed based on an oxidation of the ligand by an excess of permanganate in 3N-H₂SO₄. After stirring for 20 min. at room temperature, the excess of permanganate was back-titrated. An empirical ratio of 29.3 equivalents of permanganate per mole of H₄E is reproducible accurately at these conditions. The purity of H_4E was further controlled by an elementer microanalysis and an alcalimetric equivalent weight determination. Metals were determined by standard volumetric and/or gravimetric procedures.

Calculations

The following acid dissociation and stability constants were calculated:

$$K_{1}^{u} = \frac{[H] \cdot [H_{3}E]}{[H_{4}E]} \qquad K_{2}^{u} = \frac{[H] \cdot [H_{2}E]}{[H_{3}E]}$$
$$K_{3}^{u} = \frac{[H] \cdot [HE]}{[H_{2}E]} \qquad K_{4}^{u} = \frac{[H] \cdot [E]}{[HE]} \qquad K_{1} = \frac{[ME]}{[M] \cdot [E]}$$

(charges are omitted)

A computerized¹⁰ Bjerrum's method based on pHtitrations was used to determine Ki^H. The stability constant K1 was found as an intercept of a straight line calculated from a formation curve.¹¹ The pHtitration data corresponding to the presence of metal ions were treated by a computer to calculate formation curves.10

From the constants obtained, the formation curves can be back-calculated perfectly.

Results

Composition and Stability of Complexes in Solution

Apparent changes of absorption spectra of metal ions caused by the presence of the ligand (pH = 6-7)made it possible to choose wavelengths suitable to a determination of the composition of complex by the Job metod. The results, summarized in Figure 1, clearly show the formation of only 1:1 complex with

(10) Romary J.K. Donelly D. L., and Andrews A.C., J. Inorg. Nucl. Chem., 29, 1805 (1967).
(11) Rossotti F.J.C. and Rossotti H., The Determination of Stability Constants. Mc-Graw-Hill, New York 1961.

Petráš, J. Podlaha | Metal Complexes of Thiopolycarboxylic Acids

the exception of Fe^{2+} , where, on the contrary, only 2:1 complex demonstrates itself on the curve.

The dissociation constants of the ligand and the stability constants of the 1:1 metal complexes are presented in Table I. A shift of formation curves with an increasing metal—to—ligand ratio was invariantly observed indicating the systems to be polynuclear regarding a metal. Therefore, the stability constants were calculated from formation curves related to the two—fold excess of the ligand, where perfectly linear fits for K_1 were obtained confirming that only 1:1 complex is formed under these conditions (see Figure 2). However, none of the numerous binuclear (protonised) complexes of the M₂E and/or MH_nE type taken tentatively into account gave any reliable set

Table I. The dissociation constants of H_4E and the stability constants of its 1:1 complexes at 25° and I = 0.1.

$pK_1^{H} = 2.80 \pm 0.10$	$\log K_{MnE} = 1$
$pK_2^{H} = 3.50 \pm 0.09$	$\log K_{FeE} = 1.9 \pm 0.1$
$pK_{3}^{H} = 3.87 \pm 0.09$	$\log K_{CoE} = 2.2 \pm 0.1$
$pK_4^{H} = 4.54 \pm 0.07$	$\log K_{\rm NiE} = 4.02 \pm 0.04$
	$\log K_{CuE} = 5.29 \pm 0.04$

Figure 1. The Job plots in the systems $M^{2+}-E^{4-}$ at pH=6: A: Cu²⁺, 327 nm, 0.0005 M; B: Ni²⁺, 270 nm, 0.0005 M; C: Co²⁺, 610 nm, 0.05 M; D: Fe²⁺, 850 nm, 0.08 M.

Figure 2. The graphical determination of $pK_i\colon A\colon Cu^{2_+},$ B: $Ni^{2_+},\ C\colon Co^{2_+},\ D\colon Fe^{2_+},\ E\colon Mn^{2_+}.$

of stability constants from the other formation curves, probaly because of an extreme sensitivity of the systems to experimental errors. No 2:1 stability constants are therefore presented.

Preparative Part

In a number of cases a careful adjustment of experimental conditions (see Table II) was found essential in order to obtain pure compounds.

Sodium salts were obtained by a neutralisation of H_4E with NaHCO₃ followed by a crystallization.

The complexes $MH_2E \cdot nH_2O$ were prepared by slow crystallization of solutions containing equivalent amounts of the disodium salt and metal perchlorate. The nickel complex required somewhat modified conditions in order to prevent the formation of Ni₂E and H₄E.

The $M_2E \cdot nH_2O$ complexes were obtained mostly as precipitates by mixing Na₄E and metal perchlorate solutions in the appropriate ratio.

The preparation and the handling of the ferrous complexes were carried out under nitrogen.

All the compounds were isolated by suction, washed with a proper solvent (see Table II) and dried at room temperature.

Properties of the Compounds

The following properties are summarized in Tables II-VII: composition, appearance, the conditions of the preparation (Table II), analytical, magnetic and solubility data (Table III), electronic spectra (Table IV), powder diagrams data (Table V), i.r. spectra (Table VI) and thermal decomposition data (Table VII).

Discussion

In solution, H₄E behaves as a tetrabasic acid. Its acid dissociation constants as determined in the present work are substantially identical with those of Geary and Malcolm,4 but different from those of Longo et al.³ and Munoz et al.¹². As in similar cases, such a set of close equilibrium constants represent a system which can be treated reliably only by a computer, being still critically dependent on experimental errors. This reflects on relatively high standard deviations of the constants. The absolute magnitude of the dissociation constants responce well to a dissociation of the carboxylic protons. In solid state, however, distinct evidence for a hydrogen bond between carboxyl and sulphur was obvious as the i.r. S-H stretching band which is isotopically shifted on deuteration.

The ligand forms 1:1 complexes with transitions metal ions in solution. The trend of stability constants is consistent with Irving-Williams series, and the values of nickel and copper complexes agree approximately with those obtained by other authors^{2,4} taking into account somewhat different experimental conditions. In addition, some evidence supporting

(12) Munoz O.S. and Weinert S.O., Rev. Real Acad. Cienc. Exactas, Fis. Natur. Madrid, 61, 573 (1967). cf. C.A., 69, 90437 z (1968).

Inorganica Chimica Acta | 6:2 | June, 1972

Compound Appearance	Starting mate A	rials (moles) ^a B	ml of H₂O A+B °C	ml of non- aqueous solvent	crystal- lization	yield %
$Ma_2H_2E \cdot 2H_2O$	HLE	NaHCO ₃	250+0	250	+5°	75
white crystals	0.05	0.1	80°	EtOH	5 days	15
Na₄E . 2H₂O	H₄E	NaHCO ₃	75+0	150	25°	65
white powder	0.05	0.2	80°	MeOH	24 hours	05
H₂MnĒ . 6H₂O	Na ₂ H ₂ E	Mn(ClO ₄) ₂	240 + 10		25°	75
pale pink n.	0.025	0.025	25°	—	24 hours	75
H₂FeÊ . 6H₂O	Fe(ClO ₄) ₂	Na₂H₂E	100 + 100	150	+ 5°	65
pale yellow c.	0.025	0.025	25°	EtOH	24 hours	05
H ₂ CoE . 6H ₂ O	Na_2H_2E	$Co(ClO_4)_2$	50 + 10		25°	80
pink needles	0.025	0.025	40°		24 hours	80
H ₂ NiE . 6H ₂ O	NaH₃E	Ni(ClO ₄) ₂	50 + 10	60	+5°	75
pale green c.	0.040	0.025	80°	acetone	75 min.	22
H ₂ CuE . 2H ₂ O	Na ₂ H ₂ E	Cu(ClO ₄) ₂	25 + 10		25°	50
grass green p.	0.025	0.025	30°		2 days	10
Mn_2E . 12 H_2O	NaLE	$Mn(ClO_4)_2$	50 + 20		+ 5°	60
pale pink c.	0.025	0.050	40°	—	3 days	00
Fe₂E.2H₂O	Fe(ClO ₄) ₂	Na₄E	100 + 60	120	precipitate	45
pale ocre p.	0.090	0.033	25°	EtOH	precipitate	ŦJ
		+2gNH₄ac				
Co₂E . 8H₂O	Co(ClO ₄) ₂	Na₄E ^b	10 + 24			85
pink powder	0.075	0.025	100°		<i>w</i>	05
Ni₂E . 8H₂O	Ni(ClO ₄) ₂	Na ₄ E	10+30			40
pale green p.	0.055	0.025	50°	—	"	40
Cu ₂ E . 5H ₂ O	Cu(ClO ₄) ₂	Na ₄ E	30+30			75
grass green p.	0.050	0.025	25°	—	"	75
Cu ₂ E . 8H ₂ O	obtained by a r	ecrystallization	of the pentahyd	rate	25°	95
blue powder					14 days	55

Table II. The conditions of the preparation and the appearance of the compounds.

Appearance: n. = needles, c. = crystals, p. = powder. ^a B added to A; ^b at pH=11.

Table	111.	The	analytical,	magnetic	and	solubility	data	of	the	compounds	prepared.
											F F

Compound m.v.	H,% calcd. (found)	metal,% calcd. (found)	E,% calcd. (found)	H₂O,% calcd. (found)	μ _{eff.} ,B.M. at 20°	Solubility g/100g of water at 25°
HLE	1.032		98.97		-268.10 ⁻⁶ a	0.081
390.46	(1.03)	0.55	(98.7)			
Na_2H_2E . $2H_3O$	0.426	9.77	82.14	7.66	-278.10 ⁻⁶ a	ъ
470.47	(0.43)	(9.78)	(82.3)	(8.07)		
Na₄E . 2H₂O		17.88	75.12	7.00	-260 10 ⁻⁶ a	58.3
514.43		(18.22)	(75.8)	(6.96)	200110	5015
H₂MnE . 6H₂O	0.366	9.96	70.06	19.61	5.96	0.93
551.57	(0.36)	(9.81)	(70.2)	(19.1)	5.50	0.55
H ₂ FeE . 6H ₂ O	0.365	10.11	69.94	19.58	5 3 3	1 78
552.48	(0.37)	(10.55)	(69.2)	(18.5)	J.JJ	1.50
H ₂ CoE . 6H ₂ O	0.363	10.61	69.56	19.47	5.00	0.40
555.56	(0.37)	(10.18)	(68.9)	(19.6)	3.00	0.40
H ₂ NiE . 6H ₂ O	0.363	10.57	69.58	19.48	7 70	0.76
555.34	(0.37)	(10.11)	(69.4)	(19.5)	5.50	0.70
H ₂ CuE . 2H ₂ O	0.413	13.02	79.18	7.38	1.73 (298°K)	đ
488.03	(0.42)	(12.24)	(79.6)	(7.7) ^c	1.48 (77°K)	u
Mn ₂ E, 12H ₂ O	()	15.42	54.23	30.35	- 07	10.7
712.55		(15.01)	(53.5)	(30.2)	5.87	12.5
FesE 8HO		17.39	60.16	22.44	4.88 (298°K)	
642.29		(17.44)	(61.0)	(21.6) ^c	4.48 (77°K)	25
COE 8HO		18.18	59.59	22.23		
648.45		(18.73)	(59.5)	(21.6)	4.75	3.14
Ni-F 8H-O		18.12	59.63	22.25		
648.01		(17.17)	(59.5)	(21.6)	3.28	14.0
Cu.E 5H.O		21.05	64.02	14.93		
603 61		(20.4)	(64.0)	(15.6) ¢	1.80	е
Cut F 8H.O		19.32	58.76	21.93		
657.67	_	(19.9)	(58.0)	(22.1) ¢	1.70	0.13

^{*a*} molar susceptibility; ^{*b*} disproportionation: $2Na_2H_2E - H_4E + Na_4E$; ^{*c*} from the difference; ^{*d*} reduction of Cu^{II} ; ^{*e*} conversion to octohydrate.

a formation of 2:1 complexes in solution was obtained, but their stability constants could not be calculated from experimental data with certainty. Both types of complexes were studied in solid state. In addition to the previously known 2:1 complexes, the analogous manganous and ferrous com-

0

Table IV.	The	electronic	spectra	of	the	compounds	studied.
-----------	-----	------------	---------	----	-----	-----------	----------

	Solution	Attribution		Solid (diffu	ise reflectance)	
Compound	cm^{-1} (log ϵ)		Compound	cm ⁻¹	Compound	cm ⁻¹
HLE	33,900 (1.0)	CT (ligand)	H4E	34,500		
	45,500 (3.46)	»		40,000		
Na_2H_2E	33,900 (1.0)	CT (ligand)	$Na_2H_2E \cdot 2H_2O$	34,500		
	45,500 (3.46)	»		40,000		
Na _i E	33,900 (1.0)	CT (ligand)	$Na_{4}E \cdot 2H_{2}O$	34,500		
	45,500 (3.46)	»		40,000		
MnE ^{2~}	33,900 (1.0)	CT (Mn←S)	$H_2MnE . 6H_2O$	32,300	$Mn_2E \cdot 12H_2O$	33,300
	45,500 (3.46)	CT (ligand)		44,400		44,400
FeE ²⁻	11,000 (0.47)	⁵E _s ←⁵T₂s	$H_2FeE \cdot 6H_2O$	10,200	$Fe_2E \cdot 8H_2O$	10,400
	34,500 (1.90)	CT (Fe←S)		31,000		31,000
	45,500 (3.43)	CT (ligand)		38,500		38,500
CoE ²	8,700 (0.64)	$T_{2g} \leftarrow T_{1g}(F)$	$H_2CoE \cdot 6H_2O$	10,000	Co2E . 8H2O	10,000
	17,200 (0.80)	⁴ A _{2g} ← ⁴ T _{1g}		15,600		15,600
	20,000 (1.09)	⁴ T _{1g} (P)← ⁴ T _{1g}		19,000		19,000
	35,100 (2.08)	CT (Co←S)		33,300		38,500
	45,500 (3.47)	CT (ligand)		43,500		41,700
NiE ²⁻	9,400 (1.36)	${}^{3}T_{2s} \leftarrow {}^{3}A_{2g}$	$H_2NiE . 6H_2O$	10,000	Ni_2E . $8H_2O$	10,000
	15,300 (0.92)	${}^{3}T_{1g}(F) \leftarrow {}^{3}A_{2g}$		14,900		15,100
	25,300 (1.30)	${}^{3}T_{1g}(P) \leftarrow {}^{3}A_{2g}$		25,000		25,000
	37,000 (2.98)	CT (Ni←S)		37,000		37,000
	45.500 (3.49)	CT (ligand)		45,400		45,400
CuE ²⁻	12,700 (1.78)	$^{2}T_{2g}\leftarrow ^{2}E_{g}$	$H_2CuE \cdot 2H_2O$	13,300	$Cu_2E \cdot 5H_2O$	13,000
	30,300 (3.01)	CT (Cu←S)		25,600		29,000
	37,000 (3.22)	CT (Cu←S)		37,700		37,000
	45,500 (3.49)	CT (ligand)		43,500		45,400
		$^{2}T_{2g} \leftarrow ^{2}E_{g}$			Cu_2E . $8H_2O$	12,800
		CT (Cu←S)				35,700
		CT (Cu←S)				38,500
		CT (ligand)				45,400

Table V. The interplanar distances and the relative intensities of the powder diagram lines.

HLE d,Å I	Na2H2E . 2H2O d,Å I	Na₄E . 2H₂O d,Å I	Na₄E d,Å I	H ₂ MnE . 6H ₂ O d,Å I	H2FeE . 6H2O d,Å I	H2C0E . 6H2O d,Å I	H2NiE . 6H2O d,Å I	Mn ₂ E . 12H ₂ O d,Å I	Cu₂E . 8H₂O d,Å I	Mn₂E d,Å I
$\begin{array}{c} 6.80 & 1 \\ 5.03 & 2 \\ 4.77 & 2 \\ 4.25 & 2 \\ 3.80 & 4 \\ 3.53 & 1 \\ 3.18 & 4 \\ 2.87 & 1 \\ 2.74 & 4 \\ 2.51 & 3 \\ 2.26 & 2 \\ 2.08 & 1 \\ 2.00 & 1 \\ 1.84 & 1 \\ 1.74 & 1 \\ 1.67 & 1 \\ 1.61 & 1 \\ \end{array}$	$\begin{array}{c} 6.06 & 1 \\ 5.30 & 1 \\ 4.52 & 1 \\ 4.11 & 2 \\ 3.64 & 2 \\ 3.15 & 4 \\ 3.02 & 1 \\ 2.73 & 1 \\ 2.73 & 1 \\ 2.73 & 1 \\ 2.74 & 1 \\ 2.27 & 2 \\ 2.18 & 1 \\ 2.02 & 2 \\ 1.92 & 1 \\ 1.84 & 1 \\ 1.73 & 2 \\ 1.64 & 1 \\ 1.57 & 1 \\ 1.57 & 1 \\ 1.52 & 1 \\ 1.47 & 1 \\ 1.36 & 1 \\ 1.32 & 1 \\ \end{array}$	$\begin{array}{c} 5.99 & 2 \\ 5.03 & 1 \\ 4.37 & 2 \\ 3.82 & 4 \\ 3.63 & 4 \\ 3.36 & 2 \\ 3.28 & 1 \\ 3.01 & 3 \\ 2.87 & 3 \\ 2.74 & 1 \\ 2.61 & 3 \\ 2.74 & 1 \\ 2.61 & 3 \\ 2.74 & 1 \\ 2.61 & 3 \\ 2.74 & 1 \\ 2.61 & 3 \\ 2.74 & 1 \\ 2.22 & 2 \\ 2.15 & 1 \\ 2.02 & 3 \\ 1.87 & 1 \\ 1.81 & 2 \\ 1.75 & 2 \\ 1.70 & 1 \\ 1.62 & 1 \\ 1.55 & 2 \\ 1.51 & 1 \\ 1.44$	6.14 2 4.28 2 3.80 4 3.39 1 3.08 5 2.86 2 2.58 3 2.44 2 2.30 1 2.16 1 2.01 1 1.82 1 1.76 1 1.70 1 1.53 1	$\begin{array}{c} 8.04 & 3 \\ 5.68 & 2 \\ 5.03 & 1 \\ 4.62 & 3 \\ 4.33 & 1 \\ 3.77 & 2 \\ 3.52 & 1 \\ 3.52 & 1 \\ 3.26 & 4 \\ 3.09 & 1 \\ 2.83 & 2 \\ 2.68 & 2 \\ 2.55 & 1 \\ 2.45 & 2 \\ 2.34 & 2 \\ 2.19 & 2 \\ 2.10 & 1 \\ 1.99 & 1 \\ 1.91 & 1 \\ 1.85 & 1 \\ 1.65 & 1 \\ 1.61 & 1 \\ 1.51 & 1 \\ \end{array}$	7.37 1 5.64 1 4.92 3 4.44 1 4.23 1 3.84 2 3.60 2 3.31 4 3.06 1 2.74 3 2.54 2 2.36 2 2.20 2 2.20 2 2.20 9 1 1.87 2 1.78 1 1.64 2	7.19 3 5.63 1 4.87 1 4.53 2 4.13 2 3.70 2 3.48 1 3.14 4 3.08 1 2.81 2 2.66 2 2.51 1 2.41 1 2.32 1 2.18 2 2.01 1 1.86 1 1.75 1 1.63 1	$\begin{array}{c} 6.91 & 4 \\ 6.65 & 1 \\ 5.12 & 2 \\ 4.50 & 4 \\ 3.82 & 2 \\ 3.56 & 2 \\ 3.33 & 1 \\ 3.12 & 2 \\ 2.89 & 3 \\ 2.71 & 2 \\ 2.89 & 3 \\ 2.71 & 2 \\ 2.57 & 1 \\ 2.40 & 3 \\ 2.23 & 2 \\ 2.06 & 2 \\ 1.89 & 2 \\ 1.83 & 1 \\ 1.77 & 1 \\ 1.64 & 2 \\ 1.58 & 1 \\ 1.52 & 1 \\ 1.46 & 1 \\ 1.38 & 1 \\ 1.36 & 1 \\ 1.32 & 1 \end{array}$	$\begin{array}{c} 6.60 & 1 \\ 5.09 & 3 \\ 4.77 & 4 \\ 4.31 & 2 \\ 3.95 & 3 \\ 3.81 & 1 \\ 3.37 & 1 \\ 3.37 & 1 \\ 3.16 & 3 \\ 2.94 & 3 \\ 2.75 & 2 \\ 2.48 & 1 \\ 2.36 & 2 \\ 2.26 & 1 \\ 2.16 & 1 \\ 2.12 & 3 \\ 2.03 & 1 \\ 1.96 & 1 \\ 1.83 & 2 \\ 1.71 & 1 \\ 1.62 & 1 \\ 1.51 & 1 \\ 1.42 & 1 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.03 1 4.69 2 3.81 2 3.53 1 2.94 2 2.74 2 2.51 1 2.29 1 2.26 1 2.08 1 1.99 1 1.88 1 1.65 1 1.60 1

plexes were prepared. A different stage of hydration of our cobalt, nickel and copper complexes as compared with those of Geary and Malcolm⁴ and Ouchi *et al.⁵* is caused evidently by different methods of isolation. Moreover, a series of the previously unknown 1:1 complexes was prepared in the crystalline state. were interpreted in terms of weak octahedral crystal field formalism.¹³ The crystal field parameters calculated from the spin–allowed bands are presented in Table VIII. According to the Table, the ligand can be located into the spectrochemical and nephel-

The electronic spectra of both types of complexes

(13) Lever A.B.P.: Inorganic Electronic Spectroscopy. Elsevier, Amsterdam 1968.

Table VI. Selected infra-red bands (cm⁻¹) of the compounds prepared.

Compound	v(C-S)	ν <u>s</u> (COO)	v.(COO)	vs(COOH)	v₄(COOH)	ν(H ₂ O)	ν(S-H) ν(S-D)	$\nu(O \dots H)$ $\nu(O \dots D)$
H4E	660 s	1380 vs 1410 vs	_	1290 vs	1710 vs		2565 m	3100 vs
$D_4 E^{a}$	660 s	1383 s	_	1288 s	1712 vs		2565 m	3100 m
Na ₂ H ₂ E . 2H ₂ O	670 m	1393 s 1392 vs	1570 vs	1253 vs	1700 s	3430 s	2070 W	2560 m
Na ₂ D ₂ E . 2D ₂ O ª	665 vw	1387 vs 1390 vs	1565 vs	1253 vs	1700 s	3425 m		
Na ₂ H ₂ E	680 m	1380 m sh	1604 m	1245 m sh	1714 m			
Na₄E . 2H₂O	685 m	1408 vs	1590 vs 1610 vs	_	—	3430 vs		
Na₄E	685 m	1409 vs	1590 vs	_				
H_2MnE . $6H_2O$	695 m	1405 vs	1585 vs 1620 s sh	1252 m	1710 s	3440 vs		
H ₂ FeE . 6H ₂ O	700 m	1413 vs	1570 vs 1620 s sh	1252 m	1724 s	3450 vs		
H2CoE . 6H2O	699 m	1405 vs	1570 vs 1620 s sh	1250 m	1712 s	3460 vs		
H2NiE . 6H2O	698 m	1405 vs	1570 vs 1620 s sh	1250 m	1712 s	3460 vs		
$H_2CuE . 2H_2O$	715 m	1408 vs	1570 vs 1620 s sh	1290 s	1714 s	3440 vs		
H₄MnE	694 m	1404 vs	1585 vs 1620 vs sh	1252 m	1714 m			
H₂FeE	705 m	1408 vs	1583 vs 1615 s sh	1292 m	1714 vs	_		
H₂CoE	712 m	1405 vs	1585 vs 1620 vs sh	1290 m	1728 s			
H₂NiE	712 m	1404 vs	1585 vs 1630 vs sh	1290 s	1723 s	_		
Mn_2E . 12 H_2O	719 s	1400 vs	1572 vs 1598 vs sh	_	—	3485 s		
Fe_2E . $8H_2O$	705 s	1410 vs	1588 vs 1598 s sh		_	3440 vs		
Co2E . 8H2O	708 s	1403 vs	1587 vs 1625 vs sh			3440 vs		
Ni₂E . 8H₂O	712 _, m	1392 vs	1587 vs 1632 vs sh	—	—	3440 vs		
Cu_2E . $5H_2O$	717 m	1405 vs	1590 vs 1630 vs sh	—	—	3440 vs		
Cu ₂ E . 8H ₂ O	713 m	1382 vs	1590 vs 1630 vs sh		_	3440 vs		
Mn₃E	705 m	1402 vs	1585 vs 1620 s sh			_		

^a after repeated recrystallization from D₂O.

auxetic series at the same place as ethylenedithiodiacetic acid.⁸

The evidence of an octahedral coordination follows further from the magnetic properties and the i.r. spectra of the complexes. In such an arrangement, carboxylic oxygens are coordinated to the metal through a bond which is essentially ionic as follows from the position of $v_{as}(COO)$ band in the i.r. spectra.¹⁴ A coordination of sulphur to the metal reflects on the presence of the extra u.v. charge transfer bands in the electronic spectra, the intensity of which is in an obvious correlation with the stability constants. The further argument for the presence of sulphur-metal bonds is a distinct shift of the C-S streching frequency in the i.r. spectra of the complexes.

One must consider two possible types of the metalligand bonding in the complexes which can be presented as follows:

The results obtained in this work do not permit to take a decision between these two forms. The form B is, however, evidently more probable because of steric requirements and is supported by the position of the ligand in the spectrochemical series.

The following conception of the molecular structure can be given as corresponding to the properties of the complexes. 1:1 *complexes*: the metal ion is bound to one half of the ligand molecule, the second being protonized. The coordination around the metal is completed by two water molecules in *cis*-position (analogously to the nickel-ethylenedithiodiacetate complex¹⁵), which are not readily lost:

2:1 complexes: two metal ions exhaust the coordination ability of the ligand by bonding to the both hal-

Petráš, J. Podlaha | Metal Complexes of Thiopolycarboxylic Acids

2	5	ο
2	Э	o

Compound	Deh	ydration DTA	Decomposition of E	Ot	her pr	ocesses
compound	°C eff	fect Product	°C DTA effect	°C	effect	Product
не			200 endo	620	endo	
			415 exo			
Na ₂ H ₂ E . 2H ₂ O	150 en	$do Na_2H_2E$	245 endo	580	exo	Na₂SO₄
			280 exo			
Na E. 2H,O	80 en	do a	270 endo	400	exo	Na ₂ SO ₄
	210 en	do Na ₁ E	330 exo			
H-MnE.6H-O	110 en	do H ₂ MnE.3H ₂ O	320 endo	780	endo	Mn₃O₄
	185 en	do H-MnE	495 exo			
HyFeE , 6HyO	110	H ₂ FeE . 2H ₂ O	190 endo	680	endo	Fe ₂ O ₃
	130 en	do H-FeE	470			
H,COE, 6H,O	120	H ₂ CoE . 2H ₂ O	200 endo	800	endo	Co ₁ O ₄
11/002 . 01.20	140 en	do H ₂ CoE	480 <i>exo</i>	880	endo	CoO
H-NIE 6H-O	110	H ₂ NiE . 2H ₂ O	220 exo	740	endo	NiO
112.112.1011.0	150 en	do H-NiE	360 exo			
H ₂ CuE 2H ₂ O	80 en	do H ₂ CuE ^b	140 exo	720	endo	CuO
Incus : Enge			240 exo			
Mn.E. 12H.O	60 en	$do Mn_{1}E \cdot 2H_{2}O$	240 exo	850	endo	Mn ₂ O ₄
111120 . 121120	110 en	do Mn ₂ E	380 exo			
Fe-F 8H-O	80 en	do Fe E ^b	230 exo	570	endo	Fe ₁ O ₄
1022 : 01120			450	- • •		
Co.F. 8H-O	100 en	do CorE ^b	230 exo	800	endo	CorO
C02E . 0112O	100 00		380 exo	880	endo	CoO
NEE 8H.O	105 en	do Ni-E ^b	250 exo	750	endo	NiO
NGE . 01120	105 01		450 ero		0.140	1.10
CULE 5H.O	100 en	do CurE ^b	170 exp	780	endo	CuO
Cu2L . 51120	100 00		310 ero		entae	010
Cu.F. 8H.O	150 en	do CurF	200 exo	780	endo	CuO
Cu2E . 01120	150 61	uo outo	320 exo			

Table VII. The thermal decomposition of the compounds prepared.

^a absorbed moisture; ^b the dehydration is not fully completed before the start of the decomposition.

Table	VIII.	The	crystal	field	parameters	of	the	complexes.
-------	-------	-----	---------	-------	------------	----	-----	------------

M	D_2 , cm ⁻¹	B, cm ⁻¹	F	β
Fe ²⁺	1,100		1.10	_
Co ²⁺	952	830	1.03	0.74
Ni ²⁺	940	840	1.06	0.78
Cu ²⁺	1,270		1.06	_
		·	1.00	

Average . . . 1.06

ves of its molecule. The coordination sphere of the

(14) Nakamoto K., Infrared Spectra of Inorganic and Coordination Compounds. Willey and Sons, New York 1963.
(15) Loub J. and Podlahová J., Inorg. Nucl. Chem. Letters, 7, 409 (1971). metals is completed probably by intermolecular bridges formed through non-bonding carboxyl oxygens, e.g.:

Such polymeric framework may well be responsible for the amorphous character of the precipitates and is further supported by the one-stage dehydration having no effect on the electronic spectra.